Abstract

[1] This study investigates the spatial and temporal distribution of energy release of large, intermediate-depth earthquakes using a modified back projection technique first used to study the 2004 Sumatra-Andaman megathrust event. Multiple seismic phases are included in the back projection analysis, which provides the capability to determine the energy distribution with respect to depth and time. A total of 22 intermediate-depth earthquakes with moment magnitudes greater than or equal to 6.5 are investigated with hypocentral depths between 100 and 300 km. For most of these events, the vertical extent of energy release is either below the resolution of this study (≤5 km) or slightly above (≤15 km). This observation agrees with previous studies that find large, intermediate-depth earthquakes have subhorizontal rupture planes. The results also show a significant portion of the events have multiple rupture planes that are well separated in depth. The closeness in time of the ruptures on separate planes and the distance between the planes suggest dynamic triggering where the P waves from the first rupture initiate rupture on the second plane. We propose that a dehydration embrittlement mechanism combined with preferentially hydrated subhorizontal faults can explain the observations of dominant subhorizontal rupture planes and the frequent occurrence of rupture complexity involving multiple subevents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.