Abstract

Background Erythronium japonicum Decne (Liliaceae) is an early spring ephemeral with an underground initial floral differentiation stage. The flowering mechanism is crucial in ornamental plants due to the associated economic value. Therefore, this study is aimed at exploring the metabolic landscape during floral differentiation, including flower primordium, perianth, stamen, and the pistil differentiation period, in E. japonicum coupled with a conjoint analysis of the metabolome and transcriptome. Using ultraperformance liquid chromatography-tandem mass spectrometry, we identified 586 metabolites from 13 major metabolite classes. Comparative metabolomics between different floral developmental stages revealed several abundant metabolites during the respective phases. Upaccumulation of p-coumaroylputrescine, scopoletin, isorhoifolin, cosmosiin, genistin, and LysoPC 15 : 0 emphasized the significance of these compounds during flower development. Furthermore, previously identified DEGs, viz., EARLY FLOWERING 3, Flowering locus K, PHD finger-containing protein, and zinc finger SWIM domain-containing protein for floral differentiation, depicted a high correlation with lipid, flavonoid, and phenolics accumulation during floral developmental stages. Conclusions Together, the results improve our interpretation of the underground floral development in E. japonicum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.