Abstract

As Diphenhydramine (DPH) has been considered as a drug to treat SARS-CoV-2, the degradation of DPH from water was investigated and evaluated in this study by adopting an advanced oxidation/advanced reduction process – the UV/sulfite process. The UV/sulfite system was able to eliminate DPH within 6 mins under UV254nm and 1.0 mM sulfite. It was observed that the presence of NO3-, NO2-, Cl-, HCO3-, and SO42- anions in water can affect the performance of UV/Sulfite degradation system. The mechanism of UV/sulfite/anions was evaluated which the presence of NO3- in UV/sulfite process has revealed faster initial decay rate but lower final DPH removal. It was observed that the UV/Sulfite process was extremely sensitive to pH as the dissociation of ion species varied among pH. The reaction became sluggish in acidic solution due to the dissociation of less reactive species such as HSO3-. In alkaline solution, SO32- was the dominant species, producing powerful SO3∙- and eaq- when activated by UV at 254 nm. By conducting LC/MS analysis, the degradation pathway was proposed and can be summarized into four main pathways: hydroxylation, side chain cleavage, losing aromatic ring or ring opening. Scavenging tests were also carried out and validated the presence of various radicals contributing to the reaction, including eaq-, Ḣ, OḢ, SO3̇-, O2•- and SO4̇-.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.