Abstract

Phosphate-based NASICON materials are an excellent candidate for both electrode and solid electrolyte materials in sodium-ion batteries (SIBs). The development of new NASICON materials with higher ionic and electronic conductivities based on low cost and abundant elements is necessary for advancement of SIBs. In this study, we report the structure, morphology and conductivity of the earth-abundant Mn/Fe-based NASICON phosphate Na4MnFe(PO4)3. Pure phase powders were synthesized by solution-assisted solid-state reaction, sol-gel and Pechini methods. From refined X-ray diffraction data, the prepared phosphate was found to crystallize in trigonal symmetry with space group R3̄c. The effect of synthesis method on microstructure and conductivity was investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and impedance measurements. Smaller particle size and regular distribution of the powder was designed using a Pechini route. Impedance measurement showed a notable enhancement in conductivity, from 0.543 × 10-7 to 1.52 × 10-7 S cm-1 at 30 °C, when the powder synthesis method was altered from a solution-assisted solid-state reaction to the Pechini route, highlighting the remarkable effect of the synthesis method on conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.