Abstract

The practical application of solid phase denitrification (SPD) was hindered by either poor water quality from natural plant-like materials or high cost of pure synthetic biodegradable polymers. In this study, by combining polycaprolactone (PCL) with new natural materials (peanut shell, sugarcane bagasse), two novel economical solid carbon sources (SCSs) named as PCL/PS and PCL/SB were developed. Pure PCL and PCL/TPS (PCL with thermal plastic starch) were supplied as controls. During the 162-day operation, especially in the shortest HRT (2 h), higher NO3−-N removal was achieved by PCL/PS (87.60%±0.06%) and PCL/SB (87.93%±0.05%) compared to PCL (83.28%±0.07%) and PCL/TPS (81.83%±0.05%). The predicted abundance of functional enzymes revealed the potential metabolism pathways of major components of SCSs. The natural components entered the glycolytic cycle by enzymatical generation of intermediates, while biopolymers being converted into small molecule products under specific enzyme activities (i.e., carboxylesterase, aldehyde dehydrogenase), together providing electrons and energy for denitrification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.