Abstract

The complex poisoning of Cu-KFI catalysts by SO2 and hydrothermal aging (HTA) was investigated. The low-temperature activity of Cu-KFI catalysts was restrained by the formation of H2SO4 and then CuSO4 after sulfur poisoning. Hydrothermally aged Cu-KFI exhibited better SO2 resistance than fresh Cu-KFI since HTA significantly reduced the number of Brønsted acid sites, which were considered to be the H2SO4 storage sites. The high-temperature activity of SO2-poisoned Cu-KFI was basically unchanged compared to the fresh catalyst. However, SO2 poisoning promoted the high-temperature activity of hydrothermally aged Cu-KFI since it triggered CuOx into CuSO4 species, which was considered as an important role in the NH3-SCR reaction at high temperatures. In addition, hydrothermally aged Cu-KFI catalysts were more easily regenerated after SO2 poisoning than fresh Cu-KFI on account of the instability of CuSO4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.