Abstract
Millets and millet crop residues are gaining increasing attention. Present work provides insights into thermal degradation characteristics, pyrolysis indices, kinetic triplets, and thermodynamic parameters for pearl millet straw (PMS) pyrolysis. Pyrolysis indices revealed suitability of higher heating rates for PMS in terms of enhanced pyrolysis performance and shorter reaction time. Combined approach, encompassing model-free methods and model-based method, i.e. distributed activation energy model (DAEM) was employed to study kinetics. Average activation energy through Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, Friedman, Starink, Vyazovkin, and DAEM was found to be 189.61, 190.84, 192.71, 187.84, 193.33, and 191.08 kJ/mol, respectively. Statistical analysis through ANOVA using Tukey test demonstrated insignificant deviation for obtained activation energies. Kinetic compensation effect was employed to determine pre-exponential factor. Master plots revealed prevalence of random nucleation (R1 and R2) for α < 0.5 and diffusion (D1) and power law (P2) models for α > 0.5. Thermodynamic parameters revealed endothermic, non-spontaneous, and high degree of randomness for PMS pyrolysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.