Abstract

In all-solid-state lithium batteries, anti-perovskite solid electrolyte has high ionic conductivity and high stability with lithium metal anode. However, grain boundaries (GBs) contribute to undesirable resistance limiting ionic conductivity in anti-perovskite, and there is limited knowledge about the GBs in solid electrolyte, particularly at the atomic scale. Here, using density functional theory calculations we show that four symmetric tilt (Σ3 and Σ5) GBs effects on structural characteristics and ions transport in anti-perovskite (Li3OCl) solid electrolyte. Using first-principles simulation, GBs are found to be relatively stable resulting in its high concentrations in Li3OCl. Interestingly, the presence of GBs can improve compatibility with electrode, while it decreases the ionic conductivity and band gaps in Li3OCl. Furthermore, it is noted that the Σ5 GBs structures are softer and higher ionic conductivity than Σ3 GBs, delivering a new insight that GBs types may importantly affect the softness and ionic conductivity in solid electrolyte. Significantly, we find that the easiest Li ion migration pathway is along GB direction in Li3OCl with GBs structures. The present work uncovers the GBs behaviors in anti-perovskite solid electrolyte, which can help us to guide the design of high performance anti-perovskite solid electrolyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.