Abstract
Polysaccharide-based hydrogels were prepared by the diffusion of various divalent cations (X2+) into the polygalacturonate (polyGal) solution through a dialysis membrane. The diffusion of various divalent cations (Mg2+, Ca2+, Zn2+ and Ba2+) was investigated. The polyGal gel growth was studied as a function of the initial cation concentration by both viscoelastic and turbidity measurements. We have demonstrated for the first time that the determination of the spatiotemporal variation of turbidity during the gelation process allowed to study the gel front migration. For Ca-polyGal, Zn-polyGal and Ba-polyGal, the gel front migration was characterized by the presence of a peak at the sol/gel interface. This peak was not observed in the case of Mg-polyGal where the gel was not formed. The apparent diffusion coefficient of the gel front (Dapp) which was calculated from the evolution of this peak increased when the initial cation concentration was increased. Moreover, we have suggested a gelation mechanism based on the presence of a threshold molar ratio R* (=[X2+]/[Galacturonic unit]) in which some point-like crosslinks are precursors of the formation of dimers and multimers inducing the contraction of the gel and thus the formation of the gel front.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.