Abstract

Little information is available on thallium (Tl) adsorption onto fruit-derived biochar. In this study, pomelo peel and waste pomelo were thus chosen to prepare two kinds of biochars recorded as PPB and WPB. The two produced biochars subsequently evaluated their potential remediation of thallium (Tl) contamination in agricultural soils by their Tl adsorption capacity. Results showed that the two pomelo-derived biochars presented obvious microporous structure and rich oxygen-containing functional group, supported by the observant data of specific surface area, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Furthermore, Langmuir isothermal adsorption model can better fit the adsorption behavior of thallium onto PPB and WPB, and the subsequent maximum adsorption capacity was 4283.9μgg-1 and 5286.0μgg-1, respectively. In addition, the pseudo-second-order kinetic model could well fit the kinetic behavior of thallium adsorption onto PPB and WPB, indicating that the process is accompanied by chemical adsorption. Meanwhile, in agricultural soils, PPB and WPB can be used as environmentally friendly adsorbents to remediate Tl contamination due to their pH increase of the tested soils and their comparable adsorption ability of Tl. The obtained findings can provide insights into comprehensively developed fruit-derived biochar technology to remediate Tl contamination in agricultural soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.