Abstract

For tandem solar cells (TSCs), the highest efficiency is generally believed to occur when the top and bottom sub-cells obtain an identical photocurrent, i.e., the current-match condition. However, the real situation is that there is a slight deviation from the matching point, which is an interesting phenomenon, but lacks a clear explanation. Here, we report a coupled photoelectric investigation on the intrinsic mechanisms within TSCs under various current configurations. Taking an all-perovskite TSC as an example, we find that the efficiency deviation originates from the current reduction and fill factor (FF) compensation; moreover, the optimal efficiency depends primarily on the sub-cells with higher FF. Our analysis further reveals that the higher FF and efficiency are achieved under current-mismatch condition due to the differentiated voltage assignments among the sub-cells, i.e., the sub-cells with higher currents require larger voltages in order to effectively recombine the surplus currents. We also find that the impact of sub-cell leakage on TSC performance can be partially alleviated by increasing the current of the affected sub-cell. Such an optoelectronic insight offers a valuable guidance for designing high-efficiency TSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.