Abstract

Aqueous phase reforming (APR) of biomass-derived products has been widely applied for hydrogen generation, chemicals production, and wastewater treatment. Despite its widespread application, the complexity of the raw materials and reaction mechanisms significantly complicates the APR process, impeding its development. This study investigated the APR performance of biomass-derived products using Ni/α-MoO3 catalysts toward hydrogen production and pollutant control, conducted at a temperature of 225 °C and a residence time of 30 min, thus comprehensively understanding the effect of different functional groups. The results showed that the amide (R–HCON) exhibited superior hydrogen production potential during APR. In terms of total organic carbon (TOC) removal, ether showed a 98.10% removal efficiency without a catalyst, whereas the presence of catalyst greatly enhanced the TOC removal efficiency of acetaldehyde (-CHO) from 62.26% to 86.68%. The performed APR of biomass-derived products on Ni/α-MoO3 catalysts primary resulted in the presence of N, N-Dimethylformamide (HCON-(CH3)2), and aminobenzene (Ph-NH2) for Ni leaching with a lower concentration. The carbon deposition on the catalyst primarily resulted from the combined effects of various compounds and the oxygen vacancies within the catalysts. This study aims to provide novel insights into the APR process for both biomass and biomass-derived materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.