Abstract

SARS-CoV-2, which causes COVID-19 disease, has proven to be a disastrous pandemic due to its contagious nature. This study has been planned to theoretically explore some antidotes against this virus from natural compounds. A total of 150 compounds from the shogaol class and shogaol derivatives (SDs) have been screened whereas 50 among those, which obeyed Lipinski’s Rule of Five (Ro5), have further been investigated using molecular docking techniques. Furthermore, reference antiviral drug chloroquine (ChQ) and Co-Crystallized inhibitor have also been studied against Mproof SARS-CoV-2 for comparing the potential of our docked ligands. Surprisingly, 78% of our docked ligands have shown binding energies and inhibition constants lower than ChQ and all ligands showed these values lower than an inhibitor. We further visualized the nature of intermolecular interactions for the best docked six ligands, which have shown higher binding affinities. We have also assessed ADMET properties for three ligands that displayed visually the best intermolecular interactions. Quantum analysis of three selected ligands L4, L5, and L9 has proved their reactivity and kinetic stability. Moreover, molecular dynamic simulations over 60[Formula: see text]ns have been run for free Mproand its selected three ligand-protein complexes for evaluating conformational stability and residual flexibility of docked complexes. Furthermore, 100[Formula: see text]ns the MD simulations have been performed for two ligand complexes L4, L5 (with negative binding free energy), and inhibitor. Available parameters suggest stable complexes for our ligands and could be active drugs against SARS-CoV-2 in near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.