Abstract

Facile fabrication of the ultra-high-performance adsorbent can effectively ameliorate the Cr(VI)-pollution elimination in sewage control. Herein, a simple synthesis strategy is proposed to tap a versatile chelating resin poly(pyrogallol-tetraethylene pentamine) (PPTA) with respect to Cr(VI) removal from solution. Multiple changing factors which affect the adsorption behavior of PPTA are explored sequentially, such as initial pH, adsorbate concentration, adsorbent dosage, temperature, foreign ions, etc. The microstructure and functional mechanism of synthetic adsorbent are investigated systematically by means of various characterizations including TEM, EDS, FT-IR, XPS, etc. Consequently, the as-prepared PPTA-3 microsphere by reactant ratio of 1: 1 represents a brilliant synergistic adsorption and reduction result for Cr(VI) by the drastic electrostatic interaction of –NH3+ and –OH2+ groups, including satisfactory removal efficiency which closes to 100 % in low concentration, favorable specificity for the influence from coexistent ions (Mo(VI), Mn(VII), Cl-, Cr(III), etc), and passable recyclability. Following the surpassingly fitting with Langmuir isotherm model, its maximum capacity reaches 714.29 mg g−1 at 30 °C. The removal performance is essentially in agreement with the pseudo-second-order kinetics, simultaneously, suffers the rate-limiting impact depending on intra-particle diffusion process. In brief, this newly developed chelating resin presents an effective means with regard to the Cr(VI)-wastewater treatment or other uses in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.