Abstract

High structure flexibility can lead to large negative thermal expansion (NTE), but the reason is not clear. In this work, first-principles calculations have been carried out to investigate the relationship between NTE and structure flexibility in Zn(CN)2-type compounds. Smaller bulk modulus corresponds to larger compressibility, thus making the crystal structure more flexible and more suitable for NTE. It indicated that the ionic nature of the bond and the bond length jointly affect the structural flexibility and then act on the transverse vibration of C and N atoms. The results of lattice dynamic suggested that higher structural flexibility promotes a greater number of low-frequency optical modes with negative Grüneisen parameters, resulting in a larger NTE. This work also gives us new insight into the design of NTE materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.