Abstract

Flaxseeds are a functional food representing, by far, the richest natural grain source of lignans, and accumulate substantial amounts of other health beneficial phenolic compounds (i.e., flavonols, hydroxycinnamic acids). This specific accumulation pattern is related to their numerous beneficial effects on human health. However, to date, little data is available concerning the relative impact of genetic and geographic parameters on the phytochemical yield and composition. Here, the major influence of the cultivar over geographic parameters on the flaxseed phytochemical accumulation yield and composition is evidenced. The importance of genetic parameters on the lignan accumulation was further confirmed by gene expression analysis monitored by RT-qPCR. The corresponding antioxidant activity of these flaxseed extracts was evaluated, both in vitro, using ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and iron chelating assays, as well as in vivo, by monitoring the impact of UV-induced oxidative stress on the lipid membrane peroxidation of yeast cells. Our results, both the in vitro and in vivo studies, confirm that flaxseed extracts are an effective protector against oxidative stress. The results point out that secoisolariciresinol diglucoside, caffeic acid glucoside, and p-coumaric acid glucoside are the main contributors to the antioxidant capacity. Considering the health benefits of these compounds, the present study demonstrates that the flaxseed cultivar type could greatly influence the phytochemical intakes and, therefore, the associated biological activities. We recommend that this crucial parameter be considered in epidemiological studies dealing with flaxseeds.

Highlights

  • The consumption of fruit, vegetables, and grains has been associated with lower risks of chronic and degeneration diseases [1]

  • SDG is the main component of the lignan macromolecule accumulated in flaxseed, but other compounds, such as hydroxycinnamic acid glucosides (caffeic acid glucoside (CafG), p-coumaric acid glucoside (CouG), and ferulic acid glucoside (FerG), as well as the flavonol herbacetin diglucoside (HDG), are incorporated in substantial amounts in this macromolecule [4,31,32]

  • Only semi-quantitative evaluation of the HDG variations in flax cultivars have been studied through NMR [36], to the best of our knowledge, the present work is the first study focusing on the quantitative variations in HDG contents in linseed cultivars

Read more

Summary

Introduction

The consumption of fruit, vegetables, and grains has been associated with lower risks of chronic and degeneration diseases [1] Considering their numerous beneficial effects on human health, during the last decades, there has been an increasing interest in their uses, and flaxseeds are, considered as functional food [2]. The favorable actions on cardiovascular health of vegetable-rich diets have been ascribed to flavonols, and hydroxycinnamic acids have revealed powerful antioxidant properties and might be of particular interest for dermatologic applications [13,14]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.