Abstract

Previous research has been demonstrated that the residual unextracted antibiotics in spiramycin fermentation residue (SFR) could be efficiently removed by thermally activated peroxodisulfate (TAP) pretreatment, indicating the improvement of biodegradability. This study aimed to investigate the effect of TAP pretreatment on the succession of bacterial community and fate of antibiotic resistance genes (ARGs) during SFR composting. Results indicated that TAP pretreatment increased the composting temperature and promoted the decomposition of organic matters. Furthermore, TAP pretreatment could increase bacterial alpha diversity and significantly reduce the relative abundance of ARGs (1.13–1.75 times) and mobile genetic elements (MGEs) (1.13–1.32 times) after composting. The compost of pretreated SFR by TAP could reduce the enrichment of ARGs and MGEs in the bacterial community, especially the rRNA methylase genes of ermB (4–142-folds). Redundancy analysis showed that Actinobacteria, Bacteroidetes, Proteobacteria and horizontal gene transfer mediated by MGEs (intI1) was positively related to the changes in ARGs (accounted for 97.4%). Network analysis showed that Firmicutes was the main bacterial hosts of ARGs and MGEs. These findings demonstrated that TAP pretreatment combined composting was a promising strategy for SFR safe treatment and disposal that could reduce the proliferation and transfer of ARGs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.