Abstract

Deamination is a crucial step in the transformation of 6-cyclopropylamino guanosine prodrug to its active form. A convenient method using capillary electrophoresis (CE) without sample labeling was developed to analyze the deamination of a series of d-/l-6-cyclopropylamino guanosine analogs by mouse liver homogenate, mouse liver microsome, and adenosine deaminase (ADA). A two-step process involving a 6-amino guanosine intermediate formed by oxidative N-dealkylation was demonstrated in the metabolism of 6-cyclopropylamino guanosine to 6-hydroxy guanosine. The results indicated that the transformation rates of different prodrugs to the active form varied greatly, which were closely correlated with the configuration of nucleosides and the structure of glycosyl groups. Most importantly, d-form analogs were metabolized much faster than their l-counterparts, thus clearly pointed out that compared to guanine, modification of glycosyl part might be a better choice for the development of L-guanosine analogs for the treatment of HIV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.