Abstract

ABSTRACT A feature of reverse circulation pneumatic down-the-hole (DTH) hammer drilling system is its ability to reduce the emission of respirable dust which is known to be harmful to drilling workers and equipment. The enhanced dust control performance of the drilling system requires better understanding and insight into the airflow behavior at the bottom of the borehole. To investigate the transportation and distribution of cuttings under various drilling parameters, and to evaluate the dust control performance, we conducted a series of simulations using computational fluid dynamics (CFD) multiphase modeling. Finite volume analysis was performed on a reverse circulation drill bit with an optimized structure reported in a previous study. The results show that increasing the input airflow rate can directly improve the dust control efficiency. The rising value in terms of cuttings feed concentration, rate of penetration (ROP), particle diameter, and specularity coefficient would decrease the dust control performance. Furthermore, the characteristics of the cutting distribution vary with the operating parameters and demonstrate the multiphase flow pattern in the RC-bit. This work may provide instructive insights into cutting transportation under various drilling parameters commonly considered in the drilling process and promote the development of dust suppression with efficient drilling operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.