Abstract

Arylalkylamine N-acyltransferases (AANATs) catalyze the formation of an N-acylamide from an acyl-CoA thioester and an amine. One well known example is the production of N-acetylserotonin from acetyl-CoA and serotonin, a reaction in the melatonin biosynthetic pathway from tryptophan. AANATs have been identified from a variety of vertebrates and invertebrates. Considerable efforts have been devoted to the mammalian AANAT because a cell-permeable inhibitor specifically targeted against this enzyme could prove useful to treat diseases related to dysfunction in melatonin production. Insects are an interesting model for the study of AANATs because more than one isoform is typically expressed by a specific insect and the different insect AANATs (iAANATs) serve different roles in the insect cell. In contrast, mammals express only one AANAT. The major role of iAANATs seem to be in the production of N-acetyldopamine, a reaction important in the tanning and sclerotization of the cuticle. Metabolites identified in insects including N-acetylserotonin and long-chain N-fatty acyl derivatives of dopamine, histidine, phenylalanine, serotonin, tyrosine, and tryptophan are likely produced by an iAANAT. In vitro studies of specific iAANATs are consistent with this hypothesis. In this review, we highlight the current metabolomic knowledge of the N-acylated aromatic amino acids and N-acylated derivatives of the aromatic amino acids, the current mechanistic understanding of the iAANATs, and explore the possibility that iAANATs serve as insect “rhymezymes” regulating photoperiodism and other rhythmic processes in insects.

Highlights

  • The N-acylation of aromatic monoamines is mostly associated with the acetylation of serotonin to form N-acetylserotonin, an N-acylarylalkylamide precursor in the formation of melatonin (Hardeland and Poeggeler, 2003; Mukherjee and Maitra, 2015)

  • We found that the kinetic mechanism for Bm-iAANAT3 was steady-state ordered with the acyl-CoA substrate binding first, similar to kinetic mechanisms elucidated for insect arylalkylamine N-acyltransferase (AANAT) (iAANATs) from D. melanogaster and P. americana

  • We have outlined what is currently known about N-acylated derivatives of the aromatic amino acids and the N-acylated derivatives of the biogenic amines produced in vivo from the aromatic amino acids: dopamine, serotonin, tyramine, tryptamine, phenethylamine, and octopamine

Read more

Summary

Introduction

The N-acylation of aromatic monoamines is mostly associated with the acetylation of serotonin to form N-acetylserotonin, an N-acylarylalkylamide precursor in the formation of melatonin (Hardeland and Poeggeler, 2003; Mukherjee and Maitra, 2015). We present here an in-depth analysis of the structural and functional relationships of the iAANATs and how the iAANATs contribute to the N-acylation reactions of aromatic amino acid metabolism in insects.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.