Abstract

Nuclear receptor proteins (NRPs) perform a vital role in regulating gene expression. With the rapidity growth of NRPs in post-genomic era, it is highly recommendable to identify NRPs and their sub-families accurately from their primary sequences. Several conventional methods have been used for discrimination of NRPs and their sub-families, but did not achieve considerable results. In a sequel, a two-level new computational model “iNR-2 L” is developed. Two discrete methods namely: Dipeptide Composition and Tripeptide Composition were used to formulate NRPs sequences. Further, both the descriptor spaces were merged to construct hybrid space. Furthermore, feature selection technique minimum redundancy and maximum relevance was employed in order to select salient features as well as reduce the noise and redundancy. The experiential outcomes exhibited that the proposed model iNR-2 L achieved outstanding results. It is anticipated that the proposed computational model might be a practical and effective tool for academia and research community.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.