Abstract
To improve the learning performance of neural network (NN), this paper introduces an input attribute grouping based NN ensemble method. All of the input attributes are partitioned into exclusive groups according to the degree of inter-attribute promotion or correlation that quantifies the supportive interactions between attributes. After partitioning, multiple NNs are trained by taking each group of attributes as their respective inputs. The final classification result is obtained by integrating the results from each NN. Experimental results on several UCI datasets demonstrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Evolutionary Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.