Abstract
The objectives of this research were to experimentally establish the in-plane behavior of partially grouted (PG) reinforced concrete masonry shear walls and to assess the appropriateness of current seismic design provisions for such walls. To accomplish these, four PG special reinforced masonry shear walls (SRMSWs) were constructed based on the provisions of the Masonry Standards Joint Committee (MSJC) code and subjected to in-plane reversed cyclic displacements. The experimental test variables included mortar formulation, level of axial stress, and boundary conditions. The results of this study indicate that PG masonry shear walls respond similar to in-filled frames and provide little coupling between vertical reinforcing steels. Using these results along with those from past research, it is shown that the shear strength expression for reinforced masonry shear walls provided by MSJC (along with others) appears unconservative for PG masonry shear walls. In terms of displacement ductility, the results indicate that the response of PG SRMSW is consistent with the R factors provided by the 2006 International Building Code due to the required capacity design and increased shear demand provisions of the MSJC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.