Abstract

In this letter, we perform a first-principles study on the adsorption performance of the InP3 monolayer upon three SF6 decomposed species, including SO2, SOF2, and SO2F2, to investigate its potential as a resistance-type, optical or field-effect transistor gas sensor. Results indicate that the InP3 monolayer exhibits strong chemisorption upon SO2 but weak physisorption upon SO2F2. The most admirable adsorption behavior is upon SOF2, which provides a favorable sensing response (−19.4%) and recovery property (10.4 s) at room temperature as a resistance-type gas sensor. A high response of 180.7% upon SO2 and a poor one of −1.9% upon SO2F2 are also identified, which reveals the feasibility of the InP3 monolayer as a resistance-type sensor for SO2 detection with recycle use via a heating technique to clean the surface. Moreover, the InP3 monolayer is a promising optical sensor for SO2 detection due to the obvious changes in adsorption peaks within the range of ultraviolet and is a desirable field-effect transistor sensor for selective and sensitive detection of SO2 and SOF2 given the evident changes of QT and Eg under the applied electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.