Abstract

This study presents evidence that inositol trisphosphate (IP3) releases Ca2+ from intracellular stores in sea urchin eggs. First, high voltage discharge was used to transiently permeabilize eggs and introduce IP3; the resultant induction of cortical reactions (a well characterized Ca2+-dependent event) provided indirect evidence that IP3 released Ca2+ from intracellular stores. Next, Ca2+ uptake and release from egg homogenates and homogenate fractions were monitored by both Ca2+ minielectrodes and the fluorescent Ca2+ indicator, quin-2. Both assay methods showed Ca2+ release upon IP3 addition, with a half-maximal response at 50-60 nM IP3 and maximal Ca2+ release at approximately 1 microM IP3. Homogenates were 300-fold more sensitive to IP3 than IP2, and Ca2+ release was 95% inhibited by the Ca2+ antagonist TMB-8 (3 mM). Fractionation by density gradient centrifugation showed that activities for Ca2+ sequestration and IP3 responsiveness co-purified with endoplasmic reticulum microsomes. Following an initial IP3 addition, homogenates were refractory (desensitized) to additional IP3. However, if homogenates were centrifuged and the vesicles resuspended in media lacking IP3, they would respond to added IP3, therefore, showing that desensitization is most likely due to the presence of IP3. This study also shows that the mechanism of IP3 action is inherent to the microsomes and ions present in the medium used, with no cytoplasmic factors being required. The stability of this microsome preparation and the purification obtained with density gradient centrifugation make this a promising system with which to further characterize the mechanism of IP3 action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.