Abstract

AbstractCs2AuBiCl6 is considered to be a potential lead‐free double perovskite alternative for perovskite solar cells. Its electronic and optical properties are investigated using density functional theory. The electronic properties of Cs2AuBiCl6 material ensure a bandgap of 1.40 eV (without considering SOC) and 1.12 eV (with SOC) using mBJ exchange‐correlation functional, close to the optimal bandgap for solar cell application as per the Shockley–Queisser limit. Optical properties suggest a high absorption coefficient ≈105 cm−1 with low reflectance, making it the optimal absorber material. Furthermore, the photovoltaic performance of Cs2AuBiCl6 based single‐junction transparent conducting oxide (TCO)/IDL1/Cs2AuBiCl6/IDL2/Cu2O solar cell is investigated using SCAPS‐1D device simulation program. The impact of electron affinity, thickness, carrier concentration, defect density, and interface defect density is examined using interface defect layer (IDL) on the photovoltaic performance. The maximum photoconversion efficiency (PCE) of ≈22.18% is noticed for optimized material's parameters. These studies on TCO/IDL1/Cs2AuBiCl6/IDL2/Cu2O solar cell will provide guidelines for designing and developing an efficient lead‐free perovskite‐based solar cell as an alternative to conventional halide perovskite materials based solar cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.