Abstract

Vegetables are a rich source of macro and micronutrients. Particularly, potatoes and sweet potatoes are widely consumed and are two of the most important food crops in the world. Therefore, contamination of these products due to their content of inorganic contaminants is of great concern. Considering the healthy trend of consuming these tubers and roots with their skins, which are rich in fiber and other nutrients, analysis of the whole product could provide valuable information in relation to their food safety. Therefore, the presence of arsenic (As), cadmium (Cd) and lead (Pb) in peeled and whole potatoes and sweet potatoes was studied. To do so, analytical methods were optimized and validated according to the Association of Official Analytical Collaboration International (AOAC) requirements for food analysis. Although the content of As, Cd and Pb was in most cases more than three times below the maximum allowed levels for these contaminants, the presence of Cd was detected in the samples of whole sweet potato but not in the peeled ones. The same behavior was observed for Pb in most of the sweet potato samples analyzed. This information points to the need to generate information on the whole root and tuber contaminants content, and to have analytical methods available to gather data on the occurrence of these contaminants in the whole vegetable in order to perform their risk assessment according to the consumption habits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.