Abstract

Metal-organic frameworks (MOFs) have been widely employed as the precursors to obtain functional carbon with tuneable composition and structure. However, the design of 2D carbon nanostructures directly from two-dimensional (2D) nonlayered MOFs is still very scarce, which is mainly hindered by the synthesis of 2D nonlayered MOFs. Herein, 2D nonlayered NH2-MIL-53 (Al) is synthesized via inorganic anion modulation for 2D S, N, O-rich hard carbon nanosheets (SNO-HCN) precursor. Due to the introduction of S-doping, more open edge sites generate, which accordingly promote the formation of pyridinic N and C=O carbonyl groups. When adopted as the anode for the sodium ion batteries, the SNO-HCN electrode delivers high reversible capacity of 522 mAh g−1 and 185 mAh g−1 at 50 mA g−1 and 15000 mA g−1, respectively. The enlarged interlayer spacing, unique 2D structure, heteroatom-rich active sites, and high surface area lead to the improved electrochemical performance. Furthermore, the galvanostatic intermittent titration technique (GITT) test indicates the superior electrochemical kinetics of the SNO-HCN electrode and the quantitative analysis reveals the capacitance contribution dominates during sodium-ion storage process. This represents an universal approach for the preparation of various 2D carbon nanomaterials derived from 2D nonlayered MOFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.