Abstract

Given the importance of emotion recognition in both medical and non-medical applications, designing an automatic system has captured the attention of several scholars. Currently, EEG-based emotion recognition has a special position, which has not fulfilled the desired accuracy rates yet. This experiment intended to provide novel EEG asymmetry measures to improve emotion recognition rates. Four emotional states have been classified using the k-nearest neighbor (kNN), support vector machine, and Naïve Bayes. Feature selection has been performed, and the role of employing a different number of top-ranked features on emotion recognition rates has been assessed. To validate the efficiency of the proposed scheme, two public databases, including the SJTU Emotion EEG Dataset-IV (SEED-IV) and a Database for Emotion Analysis using Physiological signals (DEAP) were evaluated. The experimental results indicated that kNN outperformed the other classifiers with a maximum accuracy of 95.49 and 98.63% using SEED-IV and DEAP datasets, respectively. In conclusion, the results of the proposed novel EEG-asymmetry measures make the framework a superior one compared to the state-of-art EEG emotion recognition approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.