Abstract

Waste heat recovery holds significant importance in the context of natural gas power plants, as it facilitates the utilization of energy loss, leading to enhanced overall performance and mitigating adverse environmental effects. By harnessing and employing waste heat, power plants possess the capability to modify and optimize their operation, making a substantial contribution toward sustainable power/energy generation. Therefore, this study proposes a novel and eco-friendly approach to utilizing the flue gas emitted by a natural gas power plant. In addition to recovering waste heat, this method involves harnessing the flue gas for methanol production. The proposed system consists of an organic Rankine cycle, and absorption chiller, heating provider units, an electrolyzer for hydrogen generation, and a methanol synthesis unit. The novel method is implemented through computer-aided simulation using the Aspen HYSYS software and is subjected to an extensive analysis encompassing energy, exergy, environmental, and economic viewpoints. The simulation results exhibit producing 2712 kg/h of methanol with a purity of 99.97 mol%, 395.67 kg/s of hot water, 378 kg/s of chilled water, and 12253.57 kW of power. In this process, the energy and exergy efficiencies are 94.35% and 31.74%, respectively. Parametric study results demonstrate that reducing the gas turbine pressure and increasing the working fluid temperature in the evaporator of the absorption chiller cycle leads to improved exergy efficiency. Moreover, the multigeneration scenario shows a carbon dioxide footprint of 0.1564 kg/kWh and a total unit cost of product of 0.0485 $/GJ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.