Abstract

An interstellar “precursor” mission has been under discussion in the scientific community for over 25 years. Fundamental scientific questions about the interaction of the Sun with the interstellar medium can only be answered with in situ measurements that such a mission could provide. The Innovative Interstellar Explorer is a funded NASA Vision Mission Study that investigates the use of Radioisotope Electric Propulsion (REP) to enable such a mission. The problem is the development of a probe that can provide the required measurements and can reach a heliocentric distance of at least 200 astronomical units (AU) in a reasonable mission time. The required flyout speed in the direction of the inflowing interstellar medium is provided by a high-energy launch, followed by long-term, low-thrust, continuous acceleration. Trades from also using gravity assists have been studied along with trades between advanced Multi-mission radioisotope thermoelectric generators (MMRTGs) and Stirling radioisotope generators (SRGs), both powered by Pu-238. While subject to mass and power limitations for the instruments on board, such an approach relies on known General Purpose Heat Source (GPHS), Pu-238 technology and current launch vehicles for

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.