Abstract

For the first time, a hyper-thermophilic aerobic (>60 °C) bioreactor has been integrated with direct submerged membrane distillation (MD), highlighting its potential as an advanced wastewater treatment solution. The hyper-thermophilic aerobic bioreactor, operating up to 65 °C, is tailored for high organic removal, while MD efficiently produces clean water. Throughout the study, high removal rates of 99.5% for organic matter, 96.4% for ammonia, and 100% for phosphorus underscored the impressive adaptability of microorganisms to challenging hyper-thermophilic conditions and a successful combination with the MD process. Despite the extreme temperatures and substantial salinity accumulation reaching up to 12,532 μS/cm, the biomass of microorganisms increased by 1.6 times over a 92-day period, representing their remarkable resilience. The distillation flux ranged from 6.15 LMH to 8.25 LMH, benefiting from the temperature gradient in the hyper-thermophilic setting and the design of the tubular submerged MD membrane module. The system also excels in pH control, utilizing fewer alkali and nutritional resources than conventional systems. Meiothermus, Firmicutes, and Bacteroidetes, the three dominant species, played a crucial role, showcasing their significance in adapting to high salinity and decomposing organic matter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.