Abstract

The study objective was to adjust the hydrodynamic disintegrator dedicated to sewage sludge pre-treatment (HDS) to work with agricultural substrate. This involved the development and implementation of a mathematical model of flow via the device’s domain. An innovative disintegrator (HAD—hydrodynamic disintegrator for agriculture) was designed, built, and tested based on the obtained results. The main improvements to the HDS include the implementation of shredding knives in order to overcome clogging by crushed substrate, and the application of ribs in the recirculation zone, contributing to the development of an additional structure damage zone. The challenge of this study was also to determine the operating parameters of the HDA that would provide for an increase in methane production with positive energy balance. The testing procedures, for which maize silage was selected, involved batch disintegration tests and biochemical methane potential tests. No clogging of rotor or spontaneous shutting off of the device, in other words, problems that had occurred in the HDS, were observed. The applied pre-treatment method permitted an increase in the methane potential of maize silage by 34.4%, 27.0%, and 21.6%, respectively for samples disintegrated at energy densities of 10 kJ/L, 20 kJ/L, and 35 kJ/L with net energy profit.

Highlights

  • In December 2018, the Renewable Energy Directive (Directive (EU) 2018/2001) became effective as part of the Clean Energy for All Europeans package

  • This paper presents the process of adaptation of a hydrodynamic disintegration device from working with sewage sludge (HDS, hydrodynamic disintegrator for sludge), previously described in reference [17], to technology working with a broad spectrum of agricultural substrates, as well as the testing procedures

  • The HDS device was developed in the scope of previous works

Read more

Summary

Introduction

In December 2018, the Renewable Energy Directive (Directive (EU) 2018/2001) became effective as part of the Clean Energy for All Europeans package. The EU as a whole is in a good position to meet its 2020 goals, some member states will have to make additional efforts to fulfil their obligations regarding the overall share of renewable energy in gross final energy consumption. In 2018, renewable energy reached more than half (54.6%) of the gross final energy consumption in Sweden It was the first country among EU member states to achieve that goal, far ahead of Finland (41.2%), Latvia (40.3%), Denmark (36.1%), and Austria (33.4%). Countries with the lowest share of renewable energy were at the end of this ranking These were the Netherlands (7.4%), Malta (8.0%), Luxembourg (9.1%), and Belgium (9.4%). The targets for these countries require an increase in the share of renewable energy in final energy consumption. In Poland it was 11.3% in 2018 in comparison to the goal of 15% by 2020—relatively far from the requirements

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.