Abstract

A continuing global demand for lower emissions and improved power train efficiencies is likely to increase the production rate of electric vehicles in the near future. Modelling, simulating and optimising components used in electric vehicles affect and improve important parameters, such as efficiency, drivability and safety of vehicles. This paper presents a co-simulation platform for an electric vehicle. Upon this platform, high-resolution, complex thermal and dynamic mathematical models for each component are introduced. Attention was paid to the auxiliary loads, which have a large impact on the drive range, but had been widely neglected in earlier electric vehicle modelling works. The models are connected via a co-simulation software tool. Validating the models using previous vehicle measurements is followed by an assessment of thermal management techniques. In addition, an approach of how to analyse and evaluate vehicle thermal and energy management techniques and their combination with different driving conditions in a co-simulation environment is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.