Abstract

The weak anti-oxidation and smoke-suppression abilities limit the use of black phosphorus (BP) in the preparation of high-performance flame-retardant epoxy resin (EP) composites. Here, aromatic diazonium chemistry was used to graft phenylboronic acid on the surface of few-layer BP nanosheets (BPNSs) to obtain passivated BP-based nanomaterials (BP-DPBA). Then, a novel multifunctional nano flame retardant [email protected] was obtained by anchoring amorphous cobalt-based borate (Co-BO) on the surface of BP-DPBA through a low-temperature reduction reaction. Subsequently, [email protected] was incorporated into EP matrix in the form of nanofillers and formed a mechanically enhanced system. As expected, EP nanocomposites containing 2 wt% [email protected] achieves greatly improvements in thermal stability and fire safety, with 93% increase in char yield (CY) during pyrolysis, 48.4% and 41.7% decrease in peak heat release rate (PHRR) and total heat release (THR) during combustion respectively, a limiting oxygen index (LOI) value up to 32.5% and a UL94 rating of V0. In addition, the presence of Co-BO greatly improves the ability of BP to suppress toxic smoke. Specifically, EP/[email protected] 2.0 achieves a 25.4% reduction in total smoke production (TSP) during combustion. In particular, the maximum 36.2% and 73.2% increases are achieved in storage modulus and impact strength, respectively, confirming that [email protected] can effectively enhance the mechanical properties of EP. Therefore, this work provides a feasible solution for loading high-valence metal compounds on the surface of BPNSs, and prepared high-performance EP nanocomposites with enhanced fire safety and mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.