Abstract

Molecular Machines Enzymes that couple the chemical energy of adenosine triphosphate (ATP) to movement of ions across a membrane are present in all domains of life. Like their F-type cousins in mitochondria, chloroplasts, and most bacteria, vacuolar/archaeal (V/A-type) ATPases couple synthesis or hydrolysis of ATP to movement of protons across the membrane. To uncover mechanistic differences in energy coupling between F- and V/A-type enzymes, Zhou and Sazanov determined structures of a V/A-type ATP synthase from the bacterium Thermus thermophilus. With structures of multiple substates visible, the domain interfaces are made clear and a role for the elastic peripheral stalks is apparent in coupling rotational energy from Vo into the ATP-synthesizing V1 domain. Science , this issue p. [eaaw9144][1] [1]: /lookup/doi/10.1126/science.aaw9144

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.