Abstract

The connectome of the brain has a great impact on the function of the brain as the structure of the connectome affects the speed and efficiency of information transfer. As a highly energy-consuming organ, an efficient network structure is essential. A previous study has shown consistent overall brain connectivity across a large variety of species. This connectivity conservation was explained by a balance between interhemispheric and intrahemispheric connections; that is, spices with highly connected hemispheres appear to have weaker interhemisphere connections. This study examines this connectivity trade-off in the human brain using diffusion-based tractography and network analysis in the Human Connectome Project (970 subjects, 527 female). We explore the biological origins of this phenomenon, heritability, and the effect on cognitive measures.The proportion of commissural fibers in the brain had a negative correlation to hemispheric efficiency, pointing to a trade-off between inner hemispheric and interhemispheric connectivity. Network hubs including anterior and middle cingulate cortex, superior frontal areas, medial occipital areas, the parahippocampal gyrus, post- and precentral gyri, and the precuneus had the strongest contribution to this phenomenon. Other results show a high heritability as well as a strong connection to crystalized intelligence. This work presents cohort-based network analysis research, spanning a large variety of samples and exploring the overall architecture of the human connectome. Our results show a connectivity conservation phenomenon at the base of the overall brain network architecture. This network structure may explain much of the functional, behavioral, and cognitive variability among different brains.SIGNIFICANCE STATEMENT The network structure of the brain is at the basis of every brain function as it dictates the characteristics of information transfer. Understanding the patterns and mechanisms that guide the connectome structure is crucial to understanding the brain itself. Here we unravel the mechanism at the base of the connectivity conservation phenomenon by exploring the interaction between hemispheric and commissural connectivity in a large-scale cohort-based connectivity study. We describe the trade-off between the two components and examine the origins of the trade-off and observe the effect on cognitive abilities and behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.