Abstract
Most inbred strains of mice, including DBA/2 (D2), are highly susceptible to the lethal effects of ectromelia virus, but C57BL/6 (B6) mice are innately resistant. Resistance is controlled by multiple, unlinked, autosomal dominant genes. Of 101 male (B6 x D2)F1 x D2 backcrossed (N2) mice, 18 died after ectromelia virus challenge and all were homozygous for the D2 allele at the proline-rich protein (Prp) locus on distal chromosome 6 (P < 0.001). This association was suggested by the patterns of susceptibility to lethal mousepox in recombinant inbred strains derived from B6 and D2 mice (D. G. Brownstein, P. N. Bhatt, L. Gras, and R. O. Jacoby, J. Virol. 65:1946-1951, 1991). The association between the Prp locus and susceptibility to lethal mousepox also held for N2 male mice that were castrated as neonates, which increased the percentage that were susceptible to 40. Spleen virus titers were significantly augmented in B6 (NK1.1+) mice depleted of asialo GM1+ or NK1.1+ cells, whereas spleen virus titers were unaffected in D2 (NK1.1-) mice depleted of asialo GM1+ cells. These results suggest that a gene or genes within the natural killer gene complex, adjacent to the Prp locus, determine strain variations in resistance to lethal ectromelia virus infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.