Abstract

Abstract Just as animal innate immunity pits endogenous response pathways against invading extragenic threats, microbiomes are governed by myriad pathways mediating inter-genomic resource procurement, collectively known as ‘conflict systems.’ Leveraging the continually-increasing amount of genome data, we have probed such systems and in the process uncovered the evolutionary origins of core components of animal immunity. This includes the discovery that cyclic-nucleotide synthesizing enzymes like human cGAS and OAS1 and their receptors like STING were acquired from comparable conflict-triggered nucleotide signaling systems in bacteria. While our analyses point to previously-unknown diversity animal innate immunity, particularly in marine invertebrates, this diversity pales in contrast to bacterial pathways which contain a wealth of completely uncharacterized nucleotide synthetase enzymes, nucleotide receptors, and response effector domains. Further, studies from our group point to entirely-uncharacterized components of the animal innate immunity response that have also been acquired from bacterial conflict systems. These include the viral RNA-acting human Leng9 phosphoesterase and the human N4BP2L1 nucleotide kinase. These studies also uncover a connection between immunity-driven second messenger nucleotide generation and a previously-unrecognized receptor domain in the human apoptotic factor MAP3K5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.