Abstract
We present an approach for motion clustering based on a novel observation that a signature for putative pixel correspondences can be generated by collecting their residuals with respect to model hypotheses drawn randomly from the data. Inliers of the same motion cluster should have strongly correlated residuals, which are low when a hypothesis is consistent with the data in the cluster and high otherwise. After evaluating a number of hypotheses, members of the same cluster can be identified based on these correlations. Due to this property, we named our approach Inlier Clustering based on the Residuals of Random Hypotheses (ICR). An important advantage of ICR is that it does not require an inlier-outlier threshold or parameter tuning. In addition, we propose a supervised recursive formulation of ICR (r-ICR) that, unlike many motion clustering methods, does not require the number of clusters to be known a priori, as long as annotated data are available for training. We validate ICR and r-ICR on several publicly available datasets for robust geometric model fitting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.