Abstract

Abstract This article deals with the further processing of a compounded metal/thermoplastic hybrid material through injection molding. By synergistically combining two fillers, short copper fibers and a low melting alloy, in a thermoplastic matrix, it is possible to achieve extremely high electrical conductivities comparable to those of steel. At the same time, it is possible to manufacture complex parts directly using (multi-component) injection molding. The filling and solidification behavior of this highly filled material is significantly changed due to the amount of metal. The maximum flow lengths and the resulting electrical properties of the compound are investigated based on small conductor paths in 2C injection molding. Constant high mold temperatures significantly improve the maximum flow length of conductor paths without having any significant effects on electrical conductivity. With an additional dynamic mold tempering, using an external inductive heating system, the flow ability can be further improved within the injection molding process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.