Abstract

The objective of this study was to develop agomelatine (AGM) intramuscular sustained release PLA microparticles by using solvent evaporation combined with wet milling technology. The final preparation had a regular and homogeneous particle size of approximately 35 µm, as measured by laser diffraction particle size analysis and scanning electron microscopy (SEM). The drug was confirmed to be within the carrier in an amorphous state through differential scanning calorimetry (DSC) and power X-ray diffraction (PXRD) experiments. Additionally, Fourier transform infrared spectroscopy (FT-IR) analysis was applied to confirm that there was hydrogen bonding between the drug and polymer at the molecular level. In vitro release experiments indicated that the drug could achieve long-term sustained release over the period of one month, with only a 3.07% burst release, due to the involvement of the polymer and removal of drug adsorbed on the surface during the wet grinding process. The dominant release mechanism was considered to be diffusion of the drugs in the initial period. Following this, with the hydrolysis of PLA to form a colloidal viscous layer, drug release is due to the combined effect of diffusion and erosion of the polymer matrix. Additionally, drug release behavior is closely related to the degradation mechanism of the polymer carrier. The results suggest that AGM could be developed as a potential delivery system for long-acting intramuscular administration with extensive application prospects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.