Abstract

Inflammatory responses of nucleus pulposus (NP) can induce imbalanced anabolism and catabolism of extracellular matrix, and the cytosolic dsDNA accumulation and STING–NF–κB pathway activation found in NP inflammation are considered as fairly important cause of intervertebral disc (IVD) degeneration. Herein, we constructed a siSTING delivery hydrogel of aldehyde hyaluronic acid (HA-CHO) and poly(amidoamine) PAMAM/siRNA complex to intervene the abnormal STING signal for IVD degeneration treatment, where the formation of dynamic Schiff base bonds in the system (siSTING@HPgel) was able to overcome the shortcomings such as low cellular uptake, short half-life, and rapid degradation of siRNA-based strategy. PAMAM not only formed complexes with siRNA to promote siRNA transfection, but also served as dynamic crosslinker to construct hydrogel, and the injectable and self-healing hydrogel efficiently and steadily silenced STING expression in NP cells. Finally, the siSTING@HPgel significantly eased IVD inflammation and slowed IVD degeneration by prolonging STING knockdown in puncture-induced IVD degeneration rat model, revealing that STING pathway was a therapeutic target for IVD degeneration and such novel hydrogel had great potential for being applied to many other diseases for gene delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.