Abstract

Vertebral compression fractures were simulated by making a hole into sheep vertebrae and by injecting a stabilizing material. The injectable bio-ceramic Xeraspine™ was evaluated together with a commercially available PMMA (Vertebroplastic™) as the reference material. The Vertebrae were harvested after 7 days and prepared for microscopy. The samples were deposited with gold on the surface and thereafter subjected to SEM and EDX analysis. It was found that the Xeraspine-bone interface was composed of a mixture of elements. The Vertebroplastic implant was embedded in a carbon containing tissue, likely a soft tissue capsule. The Xeraspine sample was subjected to high resolution analysis in the TEM combined with EDX measurements. The TEM sample was prepared with a novel technique for preparation of the tissue-material interface (FIB). In the TEM analysis it was found that the interface region consists of ZrO2 together with a mixture possibly consisting of katoite and apatite formed during setting and/or originating from the boneapatite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.