Abstract

A design specification is said to be functionally uninitializable if an initializable implementation cannot be obtained. Due to the absence of any initialization sequence, a fault simulator or test generator that assumes an unknown starting state will be completely ineffective for uninitializable circuits. We present a novel procedure for synthesizing initializable asynchronous circuits from functionally uninitializable Signal Transition Graphs (STG). After characterizing the necessary conditions for functional uninitializability, we propose a technique that transforms the original STG into an equivalent, functionally initializable STG. We show that the presence of concurrency provides the designer with an extra degree of flexibility when implementing the circuit. It is shown that initializability can be achieved by sacrificing minimal concurrency and without violating the syntactic properties of the STG required for a hazard-free implementation. The synthesis of a trigger module illustrates this procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.