Abstract

The ${M}_{4,5}{N}_{2,3}{N}_{2,3}$ and ${M}_{4,5}{N}_{1}{N}_{2,3}$ Auger decay of atomic Rb have been studied by using photoelectron-Auger electron coincidence measurements that enable initial ionic state selected Auger spectroscopy. The Auger spectra in the present study are separated by the total angular momentum $j$ of the $3d$ hole and the orbital of the valence electron $n\ensuremath{\ell}$ after photoionization. It is shown that the technique allows isolating overlapping features and the study of otherwise unobservable spectral details, from which the presence of shake-down transitions during normal Auger decay is demonstrated experimentally. The technique allows also probing the effects of initial state parity and electron correlation in Auger electron spectroscopy. The observed spectral features are interpreted with theoretical predictions obtained from configuration interaction Dirac-Fock approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.