Abstract

The dependence of the dynamics of open quantum systems upon initial correlations between the system and environment is an utterly important yet poorly understood subject. For technical convenience most prior studies assume factorizable initial states where the system and its environments are uncorrelated, but these conditions are not very realistic and give rise to peculiar behaviors. One distinct feature is the rapid buildup or a sudden jolt of physical quantities immediately after the system is brought in contact with its environments. The ultimate cause of this is an initial imbalance between system-environment correlations and coupling. In this paper we demonstrate explicitly how to avoid these unphysical behaviors by proper adjustments of correlations and/or the coupling, for setups of both theoretical and experimental interest. We provide simple analytical results in terms of quantities that appear in linear (as opposed to affine) master equations derived for factorized initial states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.