Abstract

In the recent beam-foil experiment, resonances have been observed in decay of the beam-foil excited 2p and 2s states of H-like Fe ions at very large times. Qualitatively, the resonances were explained as a consequence of cascading down from the Rydberg states (n⪢1,l=n−1) to 2p state. Full explanation requires the theoretical values of the population probabilities Pn,l of the large-l Rydberg states of multiply charged ions of core charges Z⪢1 a.u. escaping the solid surfaces at velocities v⪢1 a.u. The resonances observed in the time dependent photon intensity indicate the existence of resonances (pronounced maxima at several n=nres) in the Pn,l distributions. Considering the population process within the framework of the time-symmetrized two-state vector model, with dynamically generalized interaction Hamiltonian, we found that the nonresonant electron pick up from the foil conduction band into the field of ionic core when the ion leaves the surface represents an important population mechanism. The obtained population distributions have the resonance-like structure like the ones simulated from the experimental signal, and the overlap shape and magnitude in accordance with the wake field model estimations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.