Abstract
During epithelial-mesenchymal interactions associated with mammalian tooth development, epithelially-derived and mesenchymally-derived extracellular matrix molecules form a discrete dentine-enamel junction. The developmental and molecular processes required to form this junction are not known. To address this problem we designed studies to test the hypothesis that ectodermally-derived epithelial cells synthesize and secrete enamel proteins which function to nucleate and regulate the growth of enamel calcium phosphate crystals. Initial enamel crystals were detected separate from the adjacent dentine. Electron-microprobe analyses revealed that early enamel crystals were octacalciumphosphate or tricalciumphosphate rather than hydroxyapatite. Thereafter, enamel crystals became confluent with the adjacent, albeit significantly smaller hydroxyapatite crystals associated with mineralized dentine. Therefore, we interpret our data to indicate that de novo enamel crystal nucleation and growth are independent from the mineralization processes characterized for dentine. We further argue that gene expression of enamel protein appears to have a constitutive function during early enamel formation and that supramolecular aggregates of amelogenin and enamelin provide the microenvironment for the nucleation and crystal growth of the initial enamel matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.