Abstract

The initial retreat of ice shelf grounding lines stabilized on seaward-sloping beds is influenced by the rheology of these beds, according to new model results. We apply a fully-coupled process model to investigate how the response of an ice stream to increased ocean temperature beneath its ice shelf depends on the assumed form of its basal flow law. For the same applied oceanic warming, the increase in grounding-line flux can be twice as great for an effectively-plastic bed as for a linear-viscous bed, suggesting that improved knowledge of the basal flow law of ice streams is necessary for predicting ice-sheet response to climatic forcing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.